NOAA, UNC-Wilmington study finds warming Atlantic ocean temperatures could incre

Warming water temperatures due to climate change could expand the range of many native species of tropical fish, including the invasive and poisonous lionfish, according to a study of 40 species along rocky and artificial reefs off North Carolina by researchers from NOAA and the University of North Carolina-Wilmington.

The findings, reported for the first time, were published in the September issue of Marine Ecology Progress Series.

“The results will allow us to better understand how the fish communities might shift under different climate change scenarios and provide the type of environmental data to inform future decisions relating to the management and siting of protected areas,” said Paula Whitfield, a research ecologist at NOAA’s National Centers for Coastal Ocean Science (NCCOS) and lead author of the study.

The North Carolina reefs lie within the temperate-tropical transition zone, where historically, both temperate and tropical species live, at their respective range limits. However, water temperatures in the zone are becoming more tropical, making it an important place to detect climate changes and its impacts.

The researchers first  made these discoveries during an ecological study of the marine communities on the North Carolina reefs. Findings from this earlier study showed similar shifts of climate change induced shifts in algal populations.

Researchers combined year-round bottom water temperature data with 2006-2010 fish community surveys in water depths from 15 to 150 feet off the coast of North Carolina. The study revealed that the fish community was primarily tropical in the deeper areas surveyed, from 122 to 150 feet, with a winter mean temperature of 21 °C (69.8 °F). However, many of these native tropical fishes, usually abundant in shallow, somewhat cooler reefs, tended to remain in the deeper, warmer water, suggesting that temperature is a main factor in controlling their distribution.

“Globally, fish communities are becoming more tropical as a result of warming temperatures,  as fish move to follow their optimal temperature range.,” said Whitfield. “Along the North Carolina coast, warming water temperatures may allow the expansion of tropical fish species, such as lionfish, into areas that were previously uninhabitable due to cold winter temperatures. The temperature thresholds collected in this study will allow us to detect and to estimate fish community changes related to water temperature.”

“This kind of monitoring data set is quite rare because it combines multi-year quantitative fish density data with continuous bottom water temperature data from the same location,” said Jonathan A. Hare, NOAA Fisheries research oceanographer and a co-author on the study.

Similarly, the distribution of the venomous Indo-Pacific lionfish (Pterois volitans), a species new to the Atlantic since 2000, was restricted to water depths deeper than 87 feet where the average water temperature was higher than 15.2°C (approximately 59.4 °F). As the more shallow waters warm, lionfish may expand their range, since they seem to be attracted to areas with a warmer  minimum temperature. Although lionfish only arrived in North Carolina in 2000 they were the most common species observed in water depths from 122 to 150 feet in this study.

Since their first sighting off the Florida east coast, in the late 1980s, lionfish have spread throughout the western North Atlantic including the Gulf of Mexico and Caribbean. They are considered a major threat to Atlantic reefs by reducing reef fish recruitment and biomass, and have been implicated in cascading impacts such as decreased coral cover on coral reefs. To date, cold winter bottom temperatures are the only factor found to control their distribution on a large scale.

NOAA’s mission is to understand and predict changes in the Earth’s environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Warming water temperatures due to climate change could expand the range of many native species of tropical fish, including the invasive and poisonous lionfish, according to a study of 40 species along rocky and artificial reefs off North Carolina by researchers from NOAA and the University of North Carolina-Wilmington.

The findings, reported for the first time, were published in the September issue of Marine Ecology Progress Series.

“The results will allow us to better understand how the fish communities might shift under different climate change scenarios and provide the type of environmental data to inform future decisions relating to the management and siting of protected areas,” said Paula Whitfield, a research ecologist at NOAA’s National Centers for Coastal Ocean Science (NCCOS) and lead author of the study.

The North Carolina reefs lie within the temperate-tropical transition zone, where historically, both temperate and tropical species live, at their respective range limits. However, water temperatures in the zone are becoming more tropical, making it an important place to detect climate changes and its impacts.

The researchers first  made these discoveries during an ecological study of the marine communities on the North Carolina reefs. Findings from this earlier study showed similar shifts of climate change induced shifts in algal populations.

Researchers combined year-round bottom water temperature data with 2006-2010 fish community surveys in water depths from 15 to 150 feet off the coast of North Carolina. The study revealed that the fish community was primarily tropical in the deeper areas surveyed, from 122 to 150 feet, with a winter mean temperature of 21 °C (69.8 °F). However, many of these native tropical fishes, usually abundant in shallow, somewhat cooler reefs, tended to remain in the deeper, warmer water, suggesting that temperature is a main factor in controlling their distribution.

“Globally, fish communities are becoming more tropical as a result of warming temperatures,  as fish move to follow their optimal temperature range.,” said Whitfield. “Along the North Carolina coast, warming water temperatures may allow the expansion of tropical fish species, such as lionfish, into areas that were previously uninhabitable due to cold winter temperatures. The temperature thresholds collected in this study will allow us to detect and to estimate fish community changes related to water temperature.”

“This kind of monitoring data set is quite rare because it combines multi-year quantitative fish density data with continuous bottom water temperature data from the same location,” said Jonathan A. Hare, NOAA Fisheries research oceanographer and a co-author on the study.

Similarly, the distribution of the venomous Indo-Pacific lionfish (Pterois volitans), a species new to the Atlantic since 2000, was restricted to water depths deeper than 87 feet where the average water temperature was higher than 15.2°C (approximately 59.4 °F). As the more shallow waters warm, lionfish may expand their range, since they seem to be attracted to areas with a warmer  minimum temperature. Although lionfish only arrived in North Carolina in 2000 they were the most common species observed in water depths from 122 to 150 feet in this study.

Since their first sighting off the Florida east coast, in the late 1980s, lionfish have spread throughout the western North Atlantic including the Gulf of Mexico and Caribbean. They are considered a major threat to Atlantic reefs by reducing reef fish recruitment and biomass, and have been implicated in cascading impacts such as decreased coral cover on coral reefs. To date, cold winter bottom temperatures are the only factor found to control their distribution on a large scale.

NOAA’s mission is to understand and predict changes in the Earth’s environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Share this article

What is the Atlantic Meridional Overturning Circulation (AMOC)?

The global conveyor belt, shown here, circulates cool subsurface water and warm surface water throughout the world. The Atlantic Meridional Overturning Circulation is part of this complex system of global ocean currents.)

The ocean’s water is constantly circulated by currents. Tidal currents occur close to shore and are influenced by the sun and moon. Surface currents are influenced by the wind. However, other, much slower currents that occur from the surface to the seafloor are driven by changes in the saltiness and ocean temperature, a process called thermohaline circulation. These currents are carried in a large “global conveyor belt,” which includes the AMOC.

AMOC stands for Atlantic Meridional Overturning Circulation. The AMOC circulates water from north to south and back in a long cycle within the Atlantic Ocean. This circulation brings warmth to various parts of the globe and also carries nutrients necessary to sustain ocean life.

Continue reading →

Read More

What is latitude?

Latitude lines start at the equator (0 degrees latitude) and run east and west, parallel to the equator. Lines of latitude are measured in degrees north or south of the equator to 90 degrees at the North or South poles.

Lines of latitude, also called parallels, are imaginary lines that divide the Earth. They run east to west, but measure your distance north or south. The equator is the most well known parallel. At 0 degrees latitude, it equally divides the Earth into the Northern and Southern hemispheres. From the equator, latitude increases as you travel north or south, reaching 90 degrees at each pole.

Continue reading →

Read More

What is longitude?

Lines of longitude, also called meridians, are imaginary lines that divide the Earth. They run north to south from pole to pole, but they measure the distance east or west. Longitude is measured in degrees, minutes, and seconds. Although latitude lines are alway equally spaced, longitude lines are furthest from each other at the equator and meet at the poles. A transcript is available that describes this infographic content in plain text. (Image credit: iStock)

Lines of longitude, also called meridians, are imaginary lines that divide the Earth. They run north to south from pole to pole, but they measure the distance east or west.

The prime meridian, which runs through Greenwich, England, has a longitude of 0 degrees. It divides the Earth into the eastern and western hemispheres. The antimeridian is on the opposite side of the Earth, at 180 degrees longitude. Though the antimeridian is the basis for the international date line, actual date and time zone boundaries are dependent on local laws. The international date line zigzags around borders near the antimeridian.

Continue reading →

Read More

What is a barrier island?

Satellite image of Cape Hatteras National Seashore on the Outer Banks of North Carolina. Credit: NASA’s Earth Observatory.

Barrier islands form as waves repeatedly deposit sediment parallel to the shoreline. As wind and waves shift according to weather patterns and local geographic features, these islands constantly move, erode, and grow. They can even disappear entirely.

They are generally separated from the mainland by tidal creeks, bays, and lagoons. Beaches and sand dune systems form on the side of the island facing the ocean; the side facing the shore often contains marshes, tidal flats, and maritime forests. These areas are important habitat for seabirds, fish and shellfish, and and nesting sea turtles.

Continue reading →

Read More
Keep Reading